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Abstract: This study investigates the implementation of a classroom
response system in STEM education in a higher education context. The
study used ExplainIt, a web-based classroom response system designed to
support students’ self-explanations and provide instant feedback. Data were
collected from 32 undergraduate students using four instruments including
demographic information, self-efficacy, engagement, and system evaluation.
The results showed that students reported positive learning experiences,
demonstrated increased self-efficacy in STEM content, and indicated high
levels of engagement following their use of ExplainIt.

Introduction
The use of Artificial Intelligence (AI) has become very prominent in higher education contexts in the last five years (Chu et al.,
2022), particularly in enabling faculty members to pose questions and provide just-in-time feedback to students in large
courses (Dever et al., 2020). This has been a game-changing feature of AI in higher education, as higher education faculty
often faced barriers to implementing feedback (Cragg, 2024) and received criticism for the inadequacies of feedback provided
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to students in large classrooms (Boud & Molloy, 2013). Specifically, there has been a rise in publications related to automated
feedback systems, particularly within STEM in higher education (Deeva et al., 2021). Automated intelligent tutoring systems
can provide adaptive feedback to assist students during problem solving (Kochmar et al., 2022) and offer guidance on practice
items (Yilmaz et al., 2022).

Feedback in higher education has shown positive effects on learners’ self-efficacy (Ozogul et al., 2008), motivation (Dawson et
al., 2019), learning outcomes (Ozogul & Sullivan, 2009; Schunk & Ertmer, 2000), and self-regulation (Zimmerman, 2000). In
recent years, technology has become a support tool for instructors while providing feedback in large classes, such as clickers
(Hunsu et al., 2016) and mobile app response systems (Teo & Chew, 2015). These solutions for feedback fall short in
developing students’ deep conceptual understanding and may not push students to achieve high-level cognitive outcomes in
STEM courses (Shapiro et al., 2017). This limitation stems from these solutions’ reliance on multiple-choice questions, which
do not allow students to construct their own responses and engage in interactive learning (Chi & Wylie, 2014). Emerging AI
technologies may present solutions to reduce the issue of reliance on multiple-choice questions for feedback and address the
absence of instant feedback in STEM classes (Roll & Wylie, 2016). 

One way to improve student learning and engagement is by developing technology that allows students to write their self-
explanations and receive feedback. Self-explanation is a cognitive process that learners can actively engage into processing
new information, acquiring skills by associating it with prior knowledge, and articulating responses in their own words to
express conceptual knowledge (Bisra et al., 2018; Fonseca & Chi, 2011). Self-explanations coupled with personalized and
specific feedback are crucial to maximize the effectiveness of this pair (Nakamoto et al., 2023). Self-explanations have been
found to be effective for student learning in STEM domains, especially in Computer Science (Sudol-DeLyser, 2015). 

Context of Study
ExplainIt is a web-based classroom response system designed to support students’ self-explanations and provide feedback.
Specifically, after creating and posing a question (e.g., “why” or “how” questions) using the Instructor App, students view the
question and submit their self-explanation responses by using the Student App. With these functionalities in place, ExplainIt is
undergoing further development to support automatic assessment of students’ self-explanation responses and provide
personalized feedback to students with large language model (LLM)-based natural language processing (NLP) techniques.
Preliminary findings for automatically assessing student self-explanations show promising results by achieving high predictive
accuracy, overcoming the limitations of manual evaluation in large classes (Carpenter et al., 2024). This highlights the
potential of LLMs to efficiently and effectively assess student explanations, toward implementing an AI-enabled feedback
system. In this initial implementation of ExplainIt, we did not utilize the LLM/NLP function but focused on the system and
student experiences. 

Research Questions
1. Are there any changes in Computer Science (CS) students’ self-efficacy before and after using the ExplainIt classroom

response system? 
2. How do CS students perceive their engagement when using the ExplainIt system? 
3. How do CS students perceive the usability of the ExplainIt system?

Method
The case study took place at a public university in the southeastern United States. The researchers investigated the effects of
ExplainIt on students’ self-efficacy, engagement, and usability perceptions. 
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Participants 
Participants were 32 undergraduate students in a face-to-face Computer Science course. Participants were between 18 and 28
years old. There were 8 (25%) females, 23 (72%) males, and 1 (3%) did not report gender. In terms of ethnicity, 16 (50%) were
white, 13 (41%) were Asian, and 3 (9%) were other. 

Data Collection and Analysis
Four instruments were used to collect data: demographic, self-efficacy, user engagement, and system evaluation. The
demographic and self-efficacy survey instruments were administered before the ExplainIt implementation. After the course,
the self-efficacy, user engagement, and system evaluation instruments were given. Once all the instruments were completed,
researchers downloaded and analyzed the data. 

Results
The completion rates for the instruments varied. For self-efficacy, 16 students completed both pre and post surveys. For self-
efficacy, the mean score was 3.69 in the pre-survey and 3.80 in the post-survey. The question with the highest gain on self-
efficacy was: “I am knowledgeable about the concepts covered in the course,” which increased from 3.23 to 3.89. However,
there were no significant differences in overall self-efficacy levels between pre- and post-surveys. 

Regarding engagement, 18 students completed the post-survey. The average agreement rating for engagement was 3.48.
Particularly, three statements received the highest ratings: “ExplainIt was not confusing to use” (4.28); “ExplainIt was not
stressful” (4.28); and “Using ExplainIt to learn was an interesting experience” (4.11). 

For system evaluation, 17 students completed it. Students rated the system’s ease of use at 3.94 and the ease of using the
system to complete tasks at 3.47, where “1” was coded as “very hard” and “5” as “very easy”. The ExplainIt system evaluation
yielded an average agreement of 3.85. The highest-rated statements were “time provided to write answers through ExplainIt
was generally enough” (4.35) and “ExplainIt system’s complexity was appropriate” (4.29). Students also rated “the system is
easy to learn quickly” very high (4.18).

The thematic analysis of the open-ended questions on usability uncovered several themes. Most students found ExplainIt
helpful for learning and understanding the CS course concepts. Students also highlighted the simplicity and usability of the
system. In terms of disliked aspects, a few students mentioned software bugs, such as a timeout issue. Students suggested
additional features for ExplainIt, such as the ability to display a history log of submitted answers, results with graphs,
differentiate between graded and non-graded questions, and an overall summary of answered questions.

Discussion
In terms of students’ self-efficacy, there was a positive change between pre- and post-instruments. This may be due to the self-
explanation prompts and responses that helped students learn CS concepts and improve their self-efficacy
perceptions. However, since there were no statistically significant differences in the gain scores, these positive gains were
minimal. The observed gains may be attributed to the use of the ExplainIt self-explanation system or simply to students
learning the course content and thus building confidence over time. Further research is needed to isolate the effects of the
ExplainIt system through an experimental study to determine its specific impact on self-efficacy.
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Students evaluated the experience with their system positively and found it easy to use and engaging. As higher education
faculty often faced barriers in implementing formative feedback (Cragg, 2024), students may have appreciated the newer
instructional approach and self-explanation support in their CS courses. This finding is promising, even though students in this
study also reported usability issues, such as system timeouts and software bugs. Despite these issues, students remained
engaged with the system and rated the system as easy to use. This may be due to the open nature of interaction in CS courses
or the fact that CS majors tend to be more lenient toward software bugs and technical issues. Future studies should
investigate a more robust version of the system, free of technical issues, and include students from other STEM disciplines.

To effectively integrate ExplainIt into diverse educational settings, instructors should receive training on best practices for
designing and implementing self-explanation prompts. Workshops and professional development sessions can help educators
craft questions that elicit meaningful self-explanations and support students in interpreting AI-generated feedback effectively.
Additionally, ensuring that AI-generated feedback remains equitable and free from biases will be crucial. Finally, large-scale
deployment may require integration with various learning management systems and robust server capacity. Addressing these
challenges will be essential to enhancing ExplainIt’s impact across diverse learning environments.
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