Towards Automated Detection of
Struggling Student Programmers

Patwardhan, S. & Acuia, R.

Educational Data Mining Exploratory Data Analysis Struggle

In programming courses, it is often difficult for instructors to identify
students who struggle while coding. Fortunately, automated assessment
tools used in courses provide a way to capture data about programming
activity. Using this data source provides the foundation for developing a
machine learning model to automatically classify students who are
struggling, even in large courses. Such a model would help instructors target
interventions to help struggling students. In this paper, we provide a step
towards creating this model. We have conducted preliminary work focused
on identifying features with the potential to indicate struggle, performing
feature engineering to extract them, and then conducting an exploratory data
analysis on real data to visualize outliers and assess feasibility.

Introduction
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Identifying struggling students in computing courses remains a persistent challenge for many instructors. Students working
on assignments at home are unobserved by an instructor, and even those completing an in-class activity may not catch the
instructor’s attention in a large class. However, courses often make use of automated assessment tools (AATs), which allow
students to submit assignments and receive feedback on which parts of their assignments have correct functionality by
executing a set of instructor-developed tests (Messer et al., 2024). AATs let us implicitly observe students by capturing
development activity, such as submission attempts, compilation status, and progress according to test cases. There is
extensive work on educational data mining (see Inhantola et al., 2015), with prior research on block-based languages (BBLs)
showing how to detect struggling learners and time interventions (e.g., Dong et al., 2021; Tabarsi et al., 2022). However, much
remains unknown about which patterns are most indicative of struggle and how they are shown in real datasets. When
instructors can identify struggling students earlier, they are able to direct support, enhance activities, and help prevent
disengagement. Without automated detection, many patterns of process struggle remain hidden unless reported by students.
Unlike work with BBLs, we examine data for a general-purpose language (Java), requiring feature engineering before
conducting exploratory data analysis (EDA) on submission logs. Our guiding research question is: can the features in student
code traces predict whether a student will get stuck on an assignment? In this preliminary work, we investigate features such
as the number of submissions each student makes, the coding time gaps, and temporal patterns of work. This work was
structured as a nested Learning Engineering cycle that focused on identifying relevant data features within the challenge stage
of our project to identify struggling students.

Methods

To investigate which features may signal student struggle, we implemented a data analysis pipeline that extracts features
from Gradescope logs. Our script processes students’ timestamped submission history and computes measures that reflect
coding behaviors. We focused on four features that represent student submission behavior: 1) Number of Submissions: The
number of times each student submitted during the assignment. 2) Time Between Submissions: For each student, we
compute the time between consecutive submissions. The longer gaps may indicate debugging times or a break. 3) Time of
Day of Work: Using the attempt timestamps, we determine the hour(s) in which work occurred. This helps reveal working
patterns, such as last-minute bursts. 4) Total Coding Time: We calculate the delta between a student’s first and last
submission. This approximates a lower bound for the time each student engaged with the assignment as seen by AAT activity.
These features were selected because we have informally observed students repeatedly submitting code to ensure it matches
the assignment requirements.

Results

We applied our methodology to data from a face-to-face sophomore-level course on data structures & algorithms (described in
Acufa & Bansal, 2024) taught in the spring of 2025. The course is taught in Java and uses an AAT to assess assignments on
topics such as lists, trees, hash tables, and graphs. This paper focuses on a warm-up assignment in which students
implemented a matrix class (n=24). Histograms for the features are shown in Figure 1.

Figure. 1. Visualizations for four extracted features on data structures & algorithm dataset.
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These plots indicate several trends. Submission counts ranged from single attempts to 31, reflecting different strategies from
students and how they went about completing the assignment. Average time between submissions displayed more students
working on the coding assignment with few breaks in between, with most students submitting frequently and a small number
exhibiting long pauses that may indicate extended debugging. Total coding time also varied widely, with some students
completing work quickly while others engaged across longer multi-hour spans. Time-of-day patterns showed clustering around
late afternoon and evening hours, with many submitting a couple of hours before the 11:59 pm deadline. Based on the
extracted features (and others), we plan to develop a machine learning classifier.

Discussion

Our findings suggest features that may meaningfully reflect students’ coding processes. The distributions we observed,
especially in submission counts, timing gaps, and total coding time, highlight that students do not engage with the assignment
uniformly. Some patterns, such as long debugging pauses, could indicate difficulty resolving errors, as seen by Dong et al.
(2021). Other students exhibited short coding durations and few submissions, suggesting efficient completion or
disengagement. One limitation is the varying sample size across features. Time between submissions could not be calculated
for every student, since it requires at least two submissions. Additionally, time-of-day patterns, while useful, may reflect
external factors such as schedules rather than factors of struggling. Despite this, our EDA demonstrates that submission-level
behaviors contain measurable structure that could inform models. These extracted features appear interpretable, making them
candidates.
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Future work will focus on building an explainable machine-learning model using the engineered features identified in this
analysis. By utilizing an explainable model, we will help instructors understand why students are flagged as struggling and
provide insight into which features indicate struggle. Expanding the dataset and validating against instructor-identified cases
of struggle will strengthen the computer system'’s reliability. Ultimately, our goal is to design an early-warning tool to increase
pass rates for the computing courses.
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